
Voice enabling mobile applications with UIVoice
Ahmad Bisher Tarakji
Samsung Research America
a.tarakji@samsung.com

Jian Xu∗
Stony Brook University

jianxu1@cs.stonybrook.edu

Juan A. Colmenares†
Samsung Research America
juan.col@samsung.com

Iqbal Mohomed
Samsung Research America
i.mohomed@samsung.com

ABSTRACT
Improvements in cloud-based speech recognition have led to an
explosion in voice assistants, as bespoke devices in the home, cars,
wearables or on smart phones. In this paper, we present UIVoice,
through which we enable voice assistants (that heavily utilize the
cloud) to dynamically interact with mobile applications running in
the edge. We present a framework that can be used by third party
developers to easily create Voice User Interfaces (VUIs) on top of ex-
isting applications. We demonstrate the feasibility of our approach
through a prototype based on Android and Amazon Alexa, describe
how we added voice to several popular applications and provide
an initial performance evaluation. We also highlight research chal-
lenges that are relevant to the edge computing community.

CCS CONCEPTS
•Human-centered computing→Ubiquitous andmobile com-
puting systems and tools; Interactive systems and tools;

1 INTRODUCTION
Recently there has been great excitement on the possibilities o�ered
by edge computing to support applications in saving bandwidth,
providing low latency experiences to users, preserving user privacy,
etc. In this paper, we describe a novel edge application — extend-
ing the capabilities of a voice assistant by performing actions on
a user’s personal mobile device. Modern voice assistants perform
most automatic speech recognition (ASR) and natural language un-
derstanding (NLU) functions in the cloud. On the other hand, mobile
devices contain signi�cant personal state of users, that which spans
across applications. By giving voice assistants access to the applica-
tions and state within mobile devices, we believe that an immense
degree of personalization can be achieved. However, this leads to
interesting architecture and latency considerations that will be of
interest to the edge computing community.

∗Work done during internship at Samsung Research America.
†Work done at Samsung Research America.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the� rst page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior speci�c permission
and/or a fee. Request permissions from permissions@acm.org.
EdgeSys’18, June 10–15, 2018, Munich, Germany
© 2018 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-5837-8/18/06. . . $15.00
https://doi.org/10.1145/3213344.3213353

The key mechanism we introduce to tie voice agents with mo-
bile applications is User Interface Automation. That is, we enable
developers1 to automate UI interactions that a human user would
perform on a mobile app, and connect these to voice interactions
that an end user would engage with on an agent. This combination
lets us “voice enable” applications that were never designed for
interface with voice agents. A novel facet of our approach is the
ability to have a dialogue with the user in the face of ambiguities.

There are four contributions in this paper: (i) we present the
UIVoice system for creating Voice User Interfaces (VUIs) on top
of existing voice agents and mobile applications, (ii) we describe a
framework that simpli�es the task of creating VUIs, (iii) we describe
our prototype system, discuss sample VUIs for several popular
mobile apps and present a detailed evaluation, and� nally, (iv) we
highlight interesting research problems in edge computing that
emanate from our work.

In this paper, we start by giving a background on voice assistants
and how they currently interface with third-party applications (§2).
In §3, we introduce our UIVoice system prototype that works with
Amazon’s Alexa family of voice agents and the Android OS. We
use our prototype to create VUIs for several popular mobile apps,
which are described and evaluated in §4. In §5, we discuss various
important issues that emerge from our research. We also provide
related work on automation techniques developed in industry and
academia in §6, and the paper concludes in §7.

2 BACKGROUND ON VOICE ASSISTANTS
In recent years, voice-based interactions with computers have been
embodied in the persona of voice assistants or agents, which can
be bespoke devices in the home, integrated into cars and wearables
or on smartphones. At present, there is no standard software ar-
chitecture for voice assistants. However, there are two conceptual
operations that occur in processing user utterances. First, the user’s
utterance goes through an automated speech recognition (ASR)
module. The key output of this module is an attempted transcrip-
tion of what the user said - text albeit still with speech recognition
errors. Next, the recognized text goes through a Natural Language
Understanding (NLU) module that attempts to extract the desired
user intent. Advanced NLU/NLP may add more complex process-
ing to the user’s voice utterance, such as emotion recognition and
speaker recognition. ASR and NLU systems that allow programma-
bility, typically require the third-party developer to specify a set
of user utterances, and how to extract commands (subsequently

1This can be any developer or even a power user - not necessarily the one who created
the speci�c application(s) being automated.

49

EdgeSys’18, June 10–15, 2018, Munich, Germany A.B. Tarakji et al.

referred to as Intents) and parameters (subsequently referred to
as Slots) from the utterance. For instance “Call my Mom” would
initiate a “call phone number” Intent with the Slot “Mom” of type
“Contact” from which the assistant should extract the number to
call. Of course, there may be multiple such applications active at
any given point in time. Ultimately, the job of the speech processing
system is to take the user utterance, extract the intent of the user
request, and route the set of action and parameters to the appro-
priate VUI application. One important thing to note about existing
voice assistants from a systems perspective is that the majority of
ASR and Intent classi�cation occurs in the cloud (a notable excep-
tion is wake word recognition). Some systems do provide a limited
recognition vocabulary on-device (e.g. functions to set alarms or
make a call). This is a fundamental problem because the size of
the recognition vocabulary has an impact on the performance of
the ASR system (and its resource requirements). The prevalence of
cloud-based ASR and NLU leads to latency and other challenges
that are relevant to the edge computing community.

A key challenge with existing SDKs from major commercial ven-
dors is that they require mobile application developers to modify
their code to support VUIs [2]. Given the large number of applica-
tions on major app stores, this is a signi�cant barrier to the use of
voice assistants on mobile phones. The approach proposed in this
paper allows unmodi�ed applications to be voice enabled.

Creators of VUI-based applications have always had to design
good voice interactions regardless of the mechanism used to im-
plement them. Designers utilize good-practices such as VUI pat-
terns [12, 13] and Grice’s maxims of conversation [10] as a guideline
to closer approximate human expectations. However, the task of
good dialog design is more an art than exact science [3, 9]. This is
an important matter but not tackled by our work. In our system,
the creator of the voice-enabled application uses the primitives of
the voice agent to de�ne an e�ective dialog with the end-user.

3 UIVOICE
In this section we present the UIVoice system overview and outline
its two main steps.

3.1 System Overview
The UIVoice system has two distinct steps: a creation step and exe-
cution step. In the creation step, a developer speci�es the VUI they
wish to create and de�ne a mapping to an existing mobile appli-
cation. To specify the VUI, the developer must choose the voice
interactions (i.e. utterances) that the end user will say to invoke
actions on the mobile app. They also specify which parts of these
utterances are slots. The mapping de�nes which interaction script
should be run for a given utterance. The second step is execution, in
which the system accepts a voice command from a user, resolves it
into a speci�c GUI interaction script with the� lled parameters, and
then executes it on the mobile phone that contains the targeted ap-
plication. In the course of performing UI interactions, there may be
ambiguities that surface. A novel facet of our approach is the ability
to have a dialogue with the user when there are multiple valid paths
for an interaction script to continue. Figure 1 shows a high-level
system design for execution of UIVoice. From a systems perspective,
we highlight the following: the voice assistant (i.e. Alexa speaker)

Figure 1: System design.

and mobile phone are connected to the home network. Since most
of the ASR and NLU for Alexa occur in the cloud, this results in
communication from the in-home device to the Alexa backend in
the cloud. Logic in that tier connects with our UIVoice backend
that is hosted in the cloud. Our UIVoice backend also maintains a
communication channel to the mobile device running the UIVoice
agent. This setup introduces various wide-area latencies that we
discuss further during our evaluation.

The results of the� rst step are two-fold: 1) code and con�gu-
ration that needs to be uploaded to the voice agent system, and
2) instructions that are made ready to be sent to an agent on the
mobile device. In the execution step, the UIVoice agent must be
running on the user’s phone, to enable remote interaction with
the applications. In our implementation, we also have a backend
component that runs on an external server and is responsible for
mediating between the user’s phone and the voice agent. In this
section we describe all of these components.

3.2 VUI Creation Step
In this step, which occurs at development time, a VUI developer
(this could be an end user who knows how to program or some
third-party developer) speci�es the voice interactions they wish to
support and the mapping to an existing mobile application. These
are both done by de�ning a Interaction Script. Conceptually, an
interaction script has both user-facing actions (that execute in the
context of the voice agent) and on-device actions. On the Voice
agent side, actions are “listen” to the user (to capture the command
the user wishes to execute for example) and “speak” to the user
to “ask” them for input or “tell” them results. At the device side,
actions might involve starting an application, navigating through
multiple screens, reading parts of the screen, clicking UI elements,
etc. Device-side actions are performed by the UIVoice device agent
on the mobile device.

3.2.1 Defining the Voice Interface. The voice interface is speci-
�ed using the existing facilities of the voice agent. In our implemen-
tation, we focused on the Amazon Alexa, which provides the Alexa
Skills Kit (ASK) framework. This framework enables developers
to create third-party applications that run on a variety of devices
such as the Echo and the Echo Show. De�ning the voice interface
requires the VUI developer to specify Intents, Slots, and sample ut-
terances. The sample utterances help the NLP engine within Alexa
to go from voice to a parsed set of intents and slots. Although these
are speci�ed in the interaction script, ASK does not allow dynamic
uploading of skills. So currently we manually upload these to Alexa
Skill Builder.

50

Voice enabling mobile applications with UIVoice EdgeSys’18, June 10–15, 2018, Munich, Germany

3.2.2 Defining Interaction Script on Mobile Device. This step
is conceptually similar to creating a parametrized macro but on
a mobile phone. In our implementation, we focused on Android
in particular. The key mechanism that enables one to introspect
and control what is displayed on screen is the Accessibility Frame-
work [4]. Its original function was to allow users with impairments
to productively use their Android device. It has also been used to
do UI automation for testing [1]. By leveraging the Accessibility
framework, we can specify actions that “�nd” certain UI elements
and “interact” with these elements programmatically. 2

To explore the possibilities and limits of creating these interac-
tion scripts, we created an interactive tool in Python that let users
type directives to query what is on screen as well as to perform
actions on the results of these queries. This tool consists of a simple
CLI that makes network requests to an agent running on the mobile
device. The agent takes the action provided, executes it, and for
queries, returns a result back to the caller. This tool is useful to
understand the DOM structure of third-party applications and helps
determine the precise action sequence to run in response to a com-
mand. As we worked with this interactive tool a pattern emerged.
We would search for elements that matched certain criteria, select
one of them, and then perform some user interaction on it. To this
end, we identi�ed a pattern called Search-Select-Action, which we
describe next.

Search-Select-Action (SSA). As mentioned, the SSA pattern dom-
inated most of the interaction scripts we explored. For example,
to click the “Login” button in an app, the system would search all
visible UI elements for buttons, select the button with the text (or
description)� eld “Login” and then perform the action “click” on
it. We created all our scripts using a sequence of SSAs. The script
is written in a declarative form, without need for explicit loops or
intermediate variables.

For each UI interaction, a Search searches for a UI element in
the application GUI. The GUI is represented as a “DOM-like” tree
(similar to the familiar DOM-tree used to render web pages) and is
constructed from data provided by Android’s accessibility frame-
work. The UI element does not need to be visible on-screen but
needs to be loaded in the DOM-tree. The search may invoke one
of many search strategies to narrow down the intended DOM ele-
ments. Each strategy will return a di�erent set of results and can
be con�gured by the developer to retrieve the UI elements she
requires.

Most searches will return several results, which will need to be
reduced to one result on which the action will be performed. This
is done by a Select. Note that the Select phase could be merged
with the Search phase as additional criteria when performing the
query. Yet, we identi�ed several cases in which the query would
return several valid results and we needed the user to “select” one
of them. In this case, the results are formatted and packaged into
an appropriate response and sent back to the voice agent to “ask”
the user for their selection. The execution on the mobile device will
“pause” until it receives the user’s selection and will resume after
2Android also provides a higher-level facility, called UIAutomation, to capture events
from the accessibility system and enable operations on them. We used the lower-level
accessibility events directly in order to have more control but did end up using some
of the ideas from UIAutomator to deal with the high rate of events and to determine
when the accessibility stream had stopped updating.

this ambiguity has been resolved. This is why we elected keeping
the Select phase separate - to allow for this user interaction. The
system will implicitly select the� rst result if there is only one, or if
the Select statement has been omitted completely.

Finally, we have actions that can be invoked on the element
selected. Not all elements accept every actions, so the system in-
ternally attempts to resolve errors and reverts back to the user in
case it can not perform such an action. We support several actions
such as Launch App, Click, Scroll, Enter Text and Extract Text. We
also have a Read action that reads back to the user the result of last
Search-Selection.

Final Interaction Script. To facilitate readability and ease of com-
munication between voice agent and mobile phone, the� nal inter-
action scripts are written in JSON. We de�ned several JSON objects
that trigger Search, Select or Action methods on the UIVoice agent
running on the phone. Examples of these JSON “commands” are
shown later in the evaluation (Figure 3).

3.3 UIVoice Execution Step
After all scripts are built and uploaded, the system is ready to accept
voice commands from the user and execute them on their mobile
phones. Execution contains several components:
• Voice Agent: in our case Alexa. It takes the voice utterance from
the user, matches it to the correct intent, extracts the variables
(slots) from the utterance, and forwards the intent with the slots
to the UIVoice backend server.
• UIVoice Backend: This is an AWS HTTP server that accepts re-
quests from the voice agent with a certain Intent. It also allows
the mobile phones to connect to it via WebSockets to facilitate
quick and timely interactions. The main function of this compo-
nent is to select the correct JSON interaction script based on the
received intent and parameterize it with the slots received from
the voice agent. It then forwards this JSON script to the phone
for execution. Any voice interactions that might occur within the
execution will also be mediated by this component.
• UIVoice Agent on User’s Smartphone: This receives parametrized
JSON and translates them into method calls on the UIVoice ser-
vice. If a User-facing Select statement is invoked, it prompts the
UIVoice backend to ask the user for additional input and then
resumes execution with the selected option.

4 EVALUATION
In this section, we evaluate three popular mobile applications that
we have voice-enabled using UIVoice (without modifying or recom-
piling them). Each app was supplemented with a useful function
that users can perform via voice.

4.1 Test Applications
Here we brie�y describe our test apps and their VUIs, in increasing
order of complexity.

WhatsApp Messaging App. A common situation is when we need
to tell someone we are running late. We created a simple VUI
for WhatsApp that allows us to invoke the command “Tell my
partner [or husband, wife, etc.] I’m running late.” This utterance
makes the user’s smartphone perform the following actions: 1)

51

EdgeSys’18, June 10–15, 2018, Munich, Germany A.B. Tarakji et al.

open WhatsApp, 2) select the recipient’s name from the contacts
and chats, 3) type out a well-formatted message, and 4)� nally press
the Send button.

YouTube Music Player. Popular music apps already have inte-
grations built into voice assistants, but the integrations are very
speci�c (e.g., one can use a device to play a song by an artist or from
a playlist). One of our current frustrations is with word collisions
in artist names and song titles. For example, artists can have simi-
lar names, the same words may appear in song titles by di�erent
artists, and often the same song is covered by multiple artists. Music
apps often give suggestions (via auto-completion) or options when
the user types words in a search box. In our experience, we have
not seen this type of functionality being provided through voice
assistants in music apps.

Hence, we took YouTube Music and created a VUI that enables
a user to say, “Give me songs by [Artist].” This vocal command
results in the following actions on the user’s mobile device: 1) start
YouTube Music, 2) switch to and highlight the search box, 3) enter
the name of the artist, as verbally given by the user, in the search
box, 4) scrape the� rst three suggestions given by the app, and 5)
read out the artist names to the user. Besides artist names, we also
have a variant for song titles. The VUI for this app di�ers from
WhatsApp’s VUI in two ways. First, we require an argument or
“slot” from the user and second, we playback audio to the user.

LinkedIn Social News Reader. We created a VUI for the LinkedIn
mobile app that allows the user to ask Alexa to fetch and read aloud
a given number of news items from the user’s personalized feed.
The requested item count is a slot with a default value of 3, which
is used when the user just asks Alexa for the news.

This VUI is interesting because, as of the date of submission,
popular voice agents like Alexa and Google Assistant do not o�er
this functionality from the LinkedIn app.More importantly, it shows
the e�cacy of our approach – we were able to take an unmodi�ed
app from a third-party developer and created a specialized VUI for
it using UIVoice. Note also that this VUI is more complex than the
previous two as it involves scrolling a continuous feed. It highlights
the bene�ts of the search-select-action scheme, which simpli�es
the interaction script needed to achieve the desired behavior.

4.2 Experimental Setup
The mobile device used in our evaluation is a Nexus 5 smartphone
running Android Marshmallow. The UIVoice agent on the phone is
written in Java (⇠3200 LOC). The Alexa device and the smartphone
are connected to the Internet in Mountain View, CA. Alexa’s ASR
andNLU processing occur onAmazon’s cloud. The UIVoice backend
is written in Java (⇠350 LOC) and deployed in the us-east region
of EC2 as required by Alexa.

4.3 Results
We start o� by reporting the LOC for each interaction script as
an indicator to the ease of creating these scripts. The LOC is 9, 6
and 6 for the interaction script for WhatsApp, Youtube Music and
LinkedIn respectively. We also needed to specify 3-4 utterances for
each, and specify the slot and slot type using primitives provided by

0

2

4

6

8

voice−to−mobile execution on phone end−to−end

M
ea

n
D

ur
at

io
n

(s
)

app
whatsapp
youtube
linkedin

Figure 2: Average latency of the test apps over 10 runs. The
error bars indicate min. and max. observed values.

AmazonAlexa.While the LOC count is low, writing each interaction
script required about 2-3 hours.

Next we report the end-to-end response times of our test apps
and the latency of UIVoice’s cloud and smartphone components.
Figure 2 shows our results. The left-most set of three bars indicate
the elapsed time from when the user� nishes speaking a phrase to
when the corresponding call is received by the smartphone. We call
this voice–to–mobile time. The elapsed time includes: 1) the network
communication latency with Amazon’s infrastructure, 2) the time
for ASR and NLU in the Alexa system, and 3) the latency of UIVoice
backend. We observed mean values around 1–2 seconds. We also
observe that WhatsApp takes far less time than the other apps; we
attribute this to WhatsApp’s VUI� lling no slots for NLU.

The bars in the middle of Figure 2 show the time it takes to
process the VUI’s logic on the smartphone. Note that a complex
series of automated operations were performed in 4–5 seconds
(more details are given below). Finally, the right-most bars in the
�gure report the overall processing time of user requests. The
processing time is under 8 seconds in almost every case, which
we consider reasonable for actual usage. However, a sophisticated
VUI with a larger number of complex interactions on the device
may take longer to process user requests. In this case, it would be
prudent to keep the user informed about the progress in processing
a request; it would prevent any misunderstanding that the system
has not heard the user or has failed in some way. This is also
important because Alexa times out interactions that take more than
certain time t , currently ⇠10 seconds.

Next, we discuss the detailed latency breakdown across inter-
active operations on the smartphone and compare them with the
voice–to–mobile duration described above. We report several inter-
esting results in Figure 3.

We observe that launching the apps take a signi�cant amount
of time when compared to other operations. While possibly ac-
ceptable in normal usage (when a user manually starts the apps),
such delay is excessive for voice-based automated apps. Hiding the
app launching delay is challenging for a system such as UIVoice
because an interaction script must wait for the app to reach a well-
known point from which to begin the automated interactions. Even
though we do not explore this issue in our work, we believe the
launching delay may be reduced through more engineering and
research e�orts.

52

Voice enabling mobile applications with UIVoice EdgeSys’18, June 10–15, 2018, Munich, Germany

w
hatsapp

youtube
linkedin

0 1000 2000 3000

click8
searchNode7

enterText6
searchNode5

click4
searchNode3

click2
searchNode1

launch app
voice−to−mobile

searchNodes5
enterText4
findFocus3

click2
searchNode1

launch app
voice−to−mobile

searchChildren4
searchNode3

click2
searchNode1

launch app
voice−to−mobile

Mean duration (ms)

Figure 3: Average time taken by various automated interac-
tions in the test apps over 10 runs.

Third, entering text and other typical interactive operations, such
as clicking on UI elements, are very fast. This result suggests that
UIVoice can save users time in repetitive tasks heavily involving
typing and clicking. However, we observe that node search oper-
ations take much more time. Part of the time required is waiting
for the graphical user interface to settle down after an interactive
event has occurred. We use the same technique as Google’s UIAu-
tomator tool, and we specify a� xed delay called quiesce time. If the
Accessibility event stream produces no changes for the speci�ed
amount of time, the UI is considered to have settled down. Through
trial and error, we obtained the quiesce time we used in our evalua-
tion (300 ms). If the value is too short, there is the danger that the
UI does complete changing before the next automated interaction
occurs, which is an error. On the other hand, if the value is too
large, it slows down the operation of the interactive scripts. With
automated interactions, this source of delay is worth reducing and
likely achievable with more engineering e�ort.

Finally, we can see variability between the various searchNode
and searchNodes operations in Figure 3. The reason is that in some
cases we only search for a particular UI element (e.g., a button) and
the search through the accessibility DOM tree can be short-circuited,
whereas in other cases we may have to go through the entire tree.
Moreover, the searchChildren operation is particularly intensive
as it may involve scrolling through screens, waiting for quiesce, and
refreshing the accessibility DOM tree. Note that when the when
the UI updates (e.g., from a scroll interaction), most nodes in the
DOM tree become invalid, and in our experience, to get an accurate
“picture” of the UI after scrolling, we must retraverse the DOM tree.

5 FUTURE RESEARCH DIRECTIONS
RELATED TO EDGE COMPUTING

Here, we list open challenges to the edge community.
Connecting the Home Edge to the cloud. Our research group
has been exploring an edge computing platform for the home. One
interesting aspect that emerges is how to connect devices in the
home edge to the cloud (e.g. for voice-agent or mobile-device based
control). Rather than have every device maintain connections to
the cloud, it is more e�cient for a single device to maintain that
connection, and relay messages to other home devices. How to do
this robustly and e�ciently is an interesting research question.
EnableMulti-Device,Multi-AgentOperation. Voice agents have
the potential to enable seamless multi-device interactions. By pro-
viding a consistent interface across multiple devices, one might
consider them to be an OS for a user’s home or their personal de-
vices. Further, users often have their data (or inferences on their
data) across di�erent services, vendors, devices or intelligent agents.
We see value in federation across intelligent agents. Our experience
integrating Alexa with interactions on an Android phone suggests
that such multi-device, multi-agent interactions may be feasible.
Our belief is that the ideal mechanism would have less reliance on
the cloud, and move towards P2P interactions between devices and
assistants.
Low-latency actuations via Voice. Popular commercial voice
agents today have signi�cant reliance on the cloud. This proves
challenging for voice-based device control when there is an expec-
tation of low latency (e.g., to control a fast-paced interactive game),
and is an promising avenue of research.

6 RELATEDWORK
Numerous commercial tools focus on automating tasks on smart
phones and across devices. Examples include: Automate, Macro-
Droid, Tasker, IFTTT, and AutomateIt. These tools enable execution
of a sequence of actions when a speci�ed condition is met. UIVoice
provides a declarative framework for creating voice and on-device
interactions that might span multiple dialogs with the user and
actions on the device.

Puppeteer [8] used OLE automation techniques to adapt con-
tent� delity of documents to resource availability. PageTailor [5]
used automation in the browser to adapt UIs to small screens. UI-
Wear [14] used android accessibility to enable companion apps on
wearables. We use automation to enable creation of Voice UIs that
leverage mobile apps.

Some recent work has considered how to facilitate interactions
across device boundaries.Weave [7] provides a programming frame-
work for developers that simpli�es creating multi-device user in-
teractions. Almond [6] provides a programming framework that
allows intelligent agents to interface across devices. The novelty
in our work is the use of UI automation to enable creation of VUIs
using existing unmodi�ed mobile applications.

SUGILITE [11] is a programming-by-demonstration system that
lets users create automations on smartphones. It also supports
parametrization of the automation and a limited form of verbal
commands. This work is complementary to UIVoice, as it could
enable end-users to create the UIVoice scripts by demonstrating

53

EdgeSys’18, June 10–15, 2018, Munich, Germany A.B. Tarakji et al.

the interactions on mobile app. UIVoice also identi�es the SSA
pattern that enables conversing with the user to choose options
while executing the script, and our work also focuses on latency
and other systems issues.

Samsung’s Bixby agent 1.0 enables end-users to createQuickCom-
mands and Multi-QuickCommands through voice. These “recorded”
commands cannot be parametrized or involve dynamically loaded
UI elements. In UIVoice, the sequence of interactions are created
programmatically on top of unmodi�ed mobile apps, and supports
reading content back to the user as well as soliciting input in the
course of an interaction. Our architecture also enables voice as-
sistants not running on the phone to nonetheless interface with
mobile apps.

7 CONCLUSIONS
In this paper, we introduced UIVoice, a system and framework that
enables voice interactions for existing mobile applications without
requiring any code modi�cations in the original application. As
voice assistants have signi�cant reliance on the cloud for their ASR
and NLU functions, we believe our model which involves signi�cant
operations on end-user devices, poses interesting challenges for
the edge computing community.

REFERENCES
[1] 2017. Accessibility Developer Guide for Android. https://developer.android.com/

training/testing/ui-automator.html.
[2] 2017. Actions on Google Assistant. https://developers.google.com/actions/.
[3] 2017. Applying Built-in Hacks of Conversation to Your Voice UI (Google I/O ’17).

https://www.youtube.com/watch?v=wuDP_eygsvs.
[4] 2017. UIAutomator, a UI testing framework for Android. https://developer.

android.com/guide/topics/ui/accessibility/index.html.
[5] Nilton Bila, Troy Ronda, Iqbal Mohomed, Khai N. Truong, and Eyal de Lara. 2007.

PageTailor: Reusable End-user Customization for the Mobile Web. In Proceedings
of the 5th International Conference on Mobile Systems, Applications and Services
(MobiSys ’07). ACM, New York, NY, USA, 16–29. https://doi.org/10.1145/1247660.
1247666

[6] Giovanni Campagna, Rakesh Ramesh, Silei Xu, Michael Fischer, and Monica S.
Lam. 2017. Almond: The Architecture of an Open, Crowdsourced, Privacy-
Preserving, Programmable Virtual Assistant (WWW ’17). Geneva, Switzerland,
341–350. https://doi.org/10.1145/3038912.3052562

[7] Pei-Yu (Peggy) Chi and Yang Li. 2015. Weave: Scripting Cross-Device Wearable
Interaction. In Proceedings of the 33rd Annual ACM Conference on Human Factors
in Computing Systems (CHI ’15). ACM, New York, NY, USA, 3923–3932. https:
//doi.org/10.1145/2702123.2702451

[8] Eyal De Lara, Dan S. Wallach, and Willy Zwaenepoel. 2001. Puppeteer:
Component-based Adaptation for Mobile Computing. In Proceedings of the
3rd Conference on USENIX Symposium on Internet Technologies and Systems -
Volume 3 (USITS’01). USENIX Association, Berkeley, CA, USA, 14–14. http:
//dl.acm.org/citation.cfm?id=1251440.1251454

[9] R Frederking. 1996. GriceâĂŹs maxims: do the right thing. Frederking, RE (1996).
[10] H Paul Grice, Peter Cole, Jerry Morgan, et al. 1975. Logic and conversation. 1975

(1975), 41–58.
[11] Toby Jia-Jun Li, Amos Azaria, and Brad A. Myers. 2017. SUGILITE: Creating

Multimodal Smartphone Automation by Demonstration. In Proceedings of the
2017 CHI Conference on Human Factors in Computing Systems (CHI ’17). ACM,
New York, NY, USA, 6038–6049. https://doi.org/10.1145/3025453.3025483

[12] Dirk Schnelle and Fernando Lyardet. 2006. Voice User Interface Design Patterns..
In EuroPLoP. 287–316.

[13] Dirk Schnelle, Fernando Lyardet, and Tao Wei. 2005. Audio Navigation Patterns.
In 10th European Conference on Pattern Languages of Programs (EuroPLoP 2005).
237–260.

[14] Jian Xu, Qingqing Cao, Aditya Prakash, Aruna Balasubramanian, and Donald E.
Porter. 2017. UIWear: Easily Adapting User Interfaces for Wearable Devices. In
Proceedings of the 23rd Annual International Conference on Mobile Computing
and Networking (MobiCom ’17). ACM, New York, NY, USA, 369–382. https:
//doi.org/10.1145/3117811.3117819

54

